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Abstract: Using the back stepping design method, a simple controller is formulated to control the 
system to its unstable equilibrium (0, 0, 0), any point of the form (0,0,1 (1 ))(0 1)b p p p+ + − < <   in 
phase space, and force the first state variable to trace arbitrary given function r(t). Suppose one 
parameter was unknown, a unidirectional coupled scheme and a parameter update role are proposed 
to assure the new Lorenz-like system to globally synchronize with a copy of itself. Numerical 
simulations using Matlab were presented to show the feasibility of our design. 

1. Introduction 
Chaos, as a very interesting nonlinear phenomenon, has been intensively studied over the past 

decades. Since Lorenz found the first classical chaotic attractor in 1963, many new attractors of a 
three-dimensional continuous-time autonomous system were coined. For example, Rossler system, 
Chua's circuit, Chen system etc. In 2002, Jinhu Lu  and Guanrong Chen reported a new chaotic 
system called Lu system, which satisfies condition 12 21 0a a = , and bridges the gap between the 
Lorenz and Chen systems[1][2]. In the same year, a unified chaotic system was created that connects 
Chen chaotic system to the Lorenz chaotic system through the Lu  chaotic system. Li presented a new 
Lorenz-like system where the sign of the crucial condition 12 21a a  is only determined by parameter 
b[3]. We will investigate the control and synchronization problem of this new Lorenz-like system. 

The control and synchronization of chaotic systems are extensively studied fields in non-linear 
dynamics that were introduced in 1990 by Ott et a1 using a scheme known as OGY closed-loop 
method, and Pecora and Carroll using a scheme called APD method respectively. 

In this paper, we investigate the control problem of this new Lorenz-like system by using the 
backstepping design method, we formulate a simple controller to control the system to its unstable 
equilibrium (0, 0, 0), any point of the form (0,0,1 (1 ))(0 1)b p p p+ + − < <  in phase space and force 
the first state variable to track arbitrary given function r(t). The adaptive design is used to deal with 
the synchronization problem of the new Lorenz-like system.  

2. The New Lorenz-like System 

The new Lorenz-like chaotic system[4] is: 

( )x a y x
y abx axz
z xy cz

= −
 = −
 = −







                                                          (1) 

Where 3( , , )Tx y z R∈  is the state variables of the system, a, b and c are parameters. It is easy to 
verify that system (1) is globally, uniformly, and asymptotically stable about its zero equilibrium if 

0a > , 0b < , 0c > . It is dissipative when 0a c+ < . The system (1) would satisfy one of the following 
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cases via the crucial condition set by Vanecek : 12 21 0a a >  when 0b > ; 12 21 0a a <  when 0b <  , and 

12 21 0a a = when 0b = .This shows that the sign of the crucial condition 12 21a a  is determined only by 
parameter b. When 0a ≠  and 0b > ，the equilibrium(0,0,0) is unstable.  

3. Controlling and Synchronization of the System 

3.1 Controlling the System to Any Point.  

In order to control the new Lorenz-like system (1), we add a control input 1u  to the third equation 
of system (1) and rewrite the controlled as 

1

( )x a y x
y abx axz
z xy cz u

= −
 = −
 = − +







                                                          (2) 

Our objective is to find a control law u1 to stabilize the state of the controlled system (2) at a 
bounded point. Starting from the first equation, a stabilizing function 1( )xα  has to be designed for the 
virtual control y in order to make the derivative of 2

1 / 2V x= , i.e., 2
1( )V x ax axy= − +  be negative 

definite. Let 1( )x pxα =  and define an error variable as 

1( )y y xα= −                                                              (3) 

We obtained the ( , )x y -subsystem 

(1 ) )
(1 )

x ay a p x
y abx axz apy ap p x
= − −


= − − + −





                                         (4) 

We construct a Lyapunov function for the subsystem as follows: 

2
2 1

1( , ) ( )
2

V x y V x y= +                                                       

Calculating the time derivative of  2 ( , )V x y  along system (4), we have 
2 2

2 ( , ) (1 ) [ 1 (1 )]V x y a p x apy axy z b p p= − − − − − − − −  
We can choose: 2 ( , ) 1 (1 )z x y b p pα= = + + − , then 2 2

2 ( , ) (1 ) 0V x y a p x apy= − − − <  if 0 1p< < . 
Similarly, allowing 

2 ( , )z z x yα= −                                                         (5) 

We get the following system in the ( , , )x y z  coordinates 

2
1

(1 ) )
(1 )

[1 (1 )]

x ay a p x
y abx axz apy ap p x
z xy px cz c b p p u

= − −
 = − − + −
 = + − − + + − +







                             (6) 

 We can construct a Lyapunov function as follows: 

2
3 2( , , ) ( , )

2
aV x y z V x y z= +                                                

Calculating the time derivative of 3( , , )V x y z  along system (6), we have 
2 2 2 2 2

3 1( , , ) (1 ) [ (1 ) ]V x y z a p x apy acz az px c b p p u= − − − − + − + + − +                  
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If we choose the control input u1 as 
2 2

1 (1 )u c b p p px= + + − −                                             (7) 

Then 3( , , )V x y z is negative, therefore system (6) has been stabilized at the origin point (0,0,0) 
according to the Lyapunov stability theory. Thus the system (2) has been stabilized at the point 
(0,0,1 (1 ))(0 1)b p p p+ + − < <  if we note the transformation (3) and (5).  

3.2 Controlling the System to Origin Point (0, 0, 0).  
In order to control the new system to the unstable equilibrium point (0, 0, 0), we add a controller u2 

to the second equation of system (1) and rewrite the controlled system as [5][6]: 

2

( )x a y x
y abx axz u
z xy cz

= −
 = − +
 = −







                                                           (8) 

For the virtual control y, we design a stabilizing function 1( )xα to make the derivative of 
2

1( ) / 2V x x= , 2
1( )V x az axy= − + , be negative definite as 1( )y xα= , let 1( ) 0xα = and define an error 

variable: 

1( )y y xα= −                                                                    (9) 

We obtain the following ( , )x y -subsystem: 

2

( )x a y x
y abx axz u
= −


= − +





                                                            (10) 

We construct a Lyapunov function for the subsystem as follows: 

2
2 1

1( , ) ( )
2

V x y V x y= +                                                                   

Calculating the time derivative of 2 ( , )V x y  along system (10), we have; 
2

2 2( , ) ( )V x y ax y ax abx axz u= − + + − +                                   (11) 

In order to make (11) be negative definite, we choose: 

2 (1 )u ax b z y= − + − −                                                       (12) 

Then the controller (12) guarantee the equilibrium (0,0) of the subsystem (10) to be asymptotically 
stable by Lyapunov stability theory. 

3.3 Tracking Any Desired Function.  
We will construct a control law u3 so that a scalar output x(t) of the new Lorenz-like system can 

track any desired function r(t). The controlled new Lorenz-like system [7] is: 

3

( )x a y x
y abx axz u
z xy cz

= −
 = − +
 = −







                                                  (13) 

The controller u3 is to be designed. Let ( ) ( ) ( )x t x t r t= − , define a function 2
1 / 2U x=  and 

calculate its time derivative along the orbit of the controlled system (13) we get 

1 ( )[ ( ) ]U x r a y x r= − − −

                                                            
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In order to make 1U  to be negative definite, we choose the virtual control y 
as ( ) ( ) /y x x r r x aa= = + + −  and define an error variable ( )y y xα= − . We obtain the ( , )x y - 
subsystem. 

3

( )x a y x ar a r
y abx abr axz arz u

a
a

 = − − + −


= + − − − +









                                              (14) 

Let 2
2 1 / 2U U y= +  ，we will get 

2
2 3( )U ax arx ax rx y ax abx axz arz abr uaa = − − + − + + − − + − +

                                (15) 

By choosing the control law u3 as follows: 

3
22 2 2 r r r xu axz abx ax y ay x ar

a
+ + −

= − − − + + + +
 

     (16) 

Then the origin (0,0) of  system(14) is asymptotically stable, and this implies that lim ( ) 0
t

x t
→∞

= .  

3.4 Adaptive Synchronization of New Lorenz-like System.  
In order to observe synchronization of the new system, we assume parameter a is unknown and the 

new Lorenz-like system (1) is the drive system [8]: 

( )x a y x
y abx axz
z xy cz

= −
 = −
 = −







                                   (17) 

And the response system is: 

1 1 1 1

1 1 1 1 2

1 1 1 1 3

( )x a y x u
y abx ax z u
z x y cz u

= − +
 = − +
 = − +







                                                 (18) 

Where u1, u2, u3 are three control functions to be designed. In order to determine the control 
functions to realize synchronization between system (17) and (18), we subtract (17) from (18) and get 
the error system: 

1 2 1 1

2 1 1 1 3 2

3 1 1 2 3 3

( )e a e e u
e abe ae z axe u
e e y xe ce u

= − +
 = − − +
 = + − +







                         (19) 

Where 1 1e x x= − , 2 1e y y= − , 3 1e z z= − .Our goal is to find proper control functions ( 1,2,3)iu i =  
and a parameter update rule such that system (18) globally synchronizes with system (17), i.e. 
lim ( ) 0
t

e t
→∞

=  where 1 2 3[ , , ]Te e e e= . 
We propose the following adaptive control law for system (18). 

1 1 2 2 2 1 3 1

2 3 1 3 2

3

( )

0

u a e e be e z e y e
u axe x e e
u

= − − + − −
 = − −
 =

                   (20) 

And the parameter update rule for the unknown parameter a is: 

1 2 1 2 1 1 1 3( ) ( ) ( )a e e e e be e z xe a a= − + − − + −                   (21) 
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Where a  is estimated value of a. 
Theorem: For any initial conditions, the response system (18) and the drive system (17) are 

globally synchronize by adaptive control law (20) and parameter update rule (21). 
Proof: Substitute the control law (20) to (19) we get the error dynamics as follows. 

1 2 1 2 2 1 3 1

2 1 1 1 3 1 1 1 1 3 2

3 1 1 2 3

( ) ( )
( ) ( )

e a e e a be e z e y e
e a be e z xe a be e z x e e
e e y xe ce

= − + − + − −
 = − − + − − −
 = + −

 

 



               (22) 

Where a a a= −  . Consider the following Lyapunov function: 

2 2 2 2
1 2 3

1 1( )
2 2

V e e e a= + + +                                                 

The time derivative of V along the solution of error system (22) gives that 
2 2 2 2
1 2 3

TV e e aa e e ce a= + = − − − −


                                       

Thus origin (0,0,0) of system(22) is globally asymptotic stable, i.e. lim ( ) 0
t

e t
→∞

= , 3(0)e R∀ ∈ . 

Therefore, the state variables  1 1 1, ,x y z  of the response system (19) and the state variables , ,x y z  
of the drive system (17) are globally synchronized asymptotically. 

4. Numerical Simulations 

4.1 Numerical Simulation for Control the New Lorenz-like System.  
In this section, numerical simulations are carried out using Matlab. The four-oder Runge-Kutta 

method is used to solve two systems of differential (2) and (7) with a time step size 0.01. We select 
the parameters of the Lorenz-like system (1) as a=5, b= 4, c=2, which is the typical chaotic case. The 
initial states of the controlled the new system (8) is, 0 (0) 20x = 0 (0) 20y = − , 0 (0) 15z = . Fig.1 shows 
that the new system can be stabilized with the control law u2  to the bounded point. 

 
Fig. 1 The wave form of the the states x, y,z for 
the controlled system (8) with the control input 
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4.2 Numerical Simulation for Synchronization.  

Now we demonstrate the effectiveness of the proposed method for synchronization of the drive 
system (17) and the response system (18). In the numerical simulation, the fourth-order Runge-Kutta 
integration method is used to solve the systems of differential equations (17)-(19) and (21) with time 
step size 0.001. We assume that the initial values of the drive and response systems 
are ( (0), (0), (0)) ( 1, 1, 1)x y z = − − −  and 1 1 1( (0), (0), (0)) (2,3,4)x y z = , respectively, then the initial 
error of system (19) is 1 2 3( (0), (0), (0)) (3,4,5)e e e = . We choose b=4, c=2 and the reference value of 
the unknown parameter a of system (1) is chosen as a=5, the initial estimated parameter (0) 10a = . 
Fig.2 displays the synchronization errors between systems (17) and (18). Obviously, the 
synchronization errors converge asymptotically to zero. Furthermore, the estimated values of 
unknown parameters converge to a=5 when t →∞ . In this case, we need only one controller to 
realize controlling and synchronization between chaotic systems. Moreover, we use backstepping 
design to enable stabilization of chaotic motion to steady state as well as tracking of any design 
trajectory to be achieved in a systematic way. 

5. Conclusion 
In this paper, by using the backstepping design method we formulate a simple controller to control 

the system to its unstable equilibrium (0, 0, 0), any point of the form (0,0,1 (1 ))(0 1)b p p p+ + − < <   
in phase space and force the first state variable to trace arbitrary given function r(t). Assume one 
parameter is unknown, we proposed an adaptive control law and a parameter update role to assure the 
new Lorenz-like system to globally synchronize with a copy of itself, which based on Lyapunov 
stability theory. The digital results obtained shows that the backing control is effective to steady state 
as well as tracking of any desired trajectory to be achieved in a systematic way.  
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Fig.2 The wave form of the synchronization 
errors(e1,e2,e3) of system(17) and system(18) 
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